I B.Tech II Semester Supplementary Examinations, Feb. 2015 MATHEMATICAL METHODS

(Common to Mechanical Engineering, Electronics & Communication Engineering, Chemical Engineering, Bio-Medical Engineering, Information Technology, Electronics & Computer Engineering, Mining and Petroliem Technology)

Time: 3 hours

Max Marks: 75

[15]

|8+7|

Set No. 1

Answer any FIVE Questions All Questions carry equal marks

- 1. (a) Find rank of matrix using Normal form $A = \begin{bmatrix} 8 & 1 & 3 & 6 \\ 0 & 3 & 2 & 2 \\ -8 & -1 & -3 & 4 \end{bmatrix}$
 - (b) Are the following equations consistent, if so solve them 2x+3y-z-2w=2, 4x+5y+3z=7x+y+2z+w=5 [7+8]
- 2. Find Eigen Vectors of $A = \begin{bmatrix} 1 & 0 & 1 \\ 1 & 4 & 3 \\ 0 & 2 & 0 \end{bmatrix}$

3. Find the rank, signature and index of the quadratic form $2x_1^2 + x_2^2 - 3x_3^2 + 12x_1x_2 - 4x_1x_3 - 8x_2x_3$ by reducing it to normal form . Also write the linear transformation which brings about the normal reduction [15]

- 4. (a) Compute the real root of the equation $3x = \cos x + 1$ by Bisection method
 - (b) Compute the real root of the equation $\tan x = x$ by iteration method. [8+7]
- 5. (a) If the interval of differencing is unity, prove the following: (i) $\Delta\left(\frac{2^x}{x!}\right) = \frac{2^x(1-x)}{(x+1)!}$

(ii)
$$\Delta \left\{ tan^{-1} \left(\begin{array}{c} \frac{n-1}{n} \end{array} \right) \right\} = tan^{-1} \left(\begin{array}{c} \frac{1}{2n^2} \end{array} \right)$$

- (b) Using the Newton's forward differences formula, find the interpolating polynomial for the function y = f(x) given by f(0) = 1, f(1) = 2, f(2) = 1, f(3) = 10. Hence evaluate f(0.75) and f(-0.5). [8+7]
- 6. (a) Find $\frac{dy}{dx}$ at x = 7.47 from the following table.

Х	7.47	7.48	7.49	7.5	7.51	7.52	7.53
Υ	0.193	0.195	0.198	0.201	0.203	0.206	0.208

(b) The following Table gives the temperature θ (in degrees of Celsius) of a cooling body at different instants of time t (in seconds):

t :	1	3	5	7	9
θ :	85.3	74.5	67.0	60.5	54.3
Find approximat	tely the ra	ate of coo	ling at t =	= 8 secon	ds.

7. (a) Solve $\frac{dy}{dx} = \frac{1}{y+x} y(0) = 1$ by R-K method and hence find y(0.1)

|"|'||||"|"|"|

Code No: R10206/R10

- (b) Solve $y^1=1+xy$ subject to the condition y(0)=2 by modified Euler's method and hence find y(0.1), y(0.2) [8+7]
- 8. (a) Fit a curve of the type $y=ae^{bx}$ to the data by the method of least squares

x	1	2	3	4	5					
у	2.6	3.3	4.2	5.4	6.9]				
(b) .Fit straight line to the data by the method of least squares										
X	2	3	4	5	6					
У	144	172.8	207.4	248.	8 29	8.5				

[8+7]

I B.Tech II Semester Supplementary Examinations, Feb. 2015MATHEMATICAL METHODS

(Common to Mechanical Engineering, Electronics & Communication Engineering, Chemical Engineering, Bio-Medical Engineering, Information Technology, Electronics & Computer Engineering, Mining and Petroliem Technology)

Time: 3 hours

Max Marks: 75

Set No. 2

Answer any FIVE Questions All Questions carry equal marks

		1	-1	2	0	
1.	(a) Find rank of a Matrix using Echelon form where $A =$	0	1	2	1	
		5	3	14	4	

- (b) Show that equations x+y+z=6, x+2y+3z=14, x+4y+7z=30 are consistent and solve them |7+8|
- 2. Find Eigen vectors of $A = \begin{bmatrix} 2 & 2 & 1 \\ 1 & 3 & 1 \\ 1 & 2 & 2 \end{bmatrix}$
- 3. Determine the nature, index rank, and signature of the quadratic form $5x_1^2 + 26x_2^2 + 10x_3^2 + 6x_1x_2 + 14x_1x_3 + 4x_2x_3$ [15]
- (a) Find the root of the equation $x^3 6x + 4 = 0$ by Newton-Raphson's Method 4. correct to five decimal places
 - (b) Find a root of the equation $x \log_{10} x = 1.2$ by Bisection method. [8+7]
- (a) The values of annuities for certain ages are given for the following ages. Find 5.the annuity at age 27 $\frac{1}{2}$ using Gauss's forward interpolation formula

Age:	25	26	27	28	29			
Annuity:	16.195	15.919	15.630	15.326	15.006			
Find f(2.5) using Newton's forward formula from the following table								

(b)	Find $f(2.5)$ using N	ewto	n's fo	rward	formul	a from	the fo	llowing	table	
	X	0	1	2	3	4	5	6		[8 + 7]
	Υ	0	1	16	81	256	625	1296		[0+1]

(a) The velocity v of a particle moving in a straight line covers at distance x in 6. time t. They are related as given in the following table. Find f'(15)

X	0	10	20	30	40
Y	45	60	65	54	42

- (b) Evaluate $\int_0^1 x^3 dx$ with five sub-intervals by Trapezoidal rule. [8+7]
- (a) Solve $y^1=3x+y/2$, y(0)=1 by Taylor series method and hence find y(0.1), 7. y(0.2)
 - (b) Solve the equation $\frac{dy}{dx} = xy + 1$, y(0)=1 by Picard's method and hence find y(0.1)[8+7]

[15]

Code No: R10206/R10

8. (a)	Fit a least	square p	arabola	y = a +	$bx+cx^2$	to the	followir	ng data	
	Х	0	1	2	3	4	5	6	
	у	3	3	5	9	15	23	33	
(b)	Fit a straig	ght line o	of the fo	rm y= a	a+bx to	the fo	llowing	data	
	Х	1	2	3	4		6	8	[8 + 7]
	У	2.4	3.1	3.5	4.	2	5	6	

(Common to Mechanical Engineering, Electronics & Communication Engineering, Chemical Engineering, Bio-Medical Engineering, Information Technology, Electronics & Computer Engineering, Mining and Petroliem Technology)

Time: 3 hours

Max Marks: 75

Set No. 3

Answer any FIVE Questions

All Questions carry equal marks

- 1. (a) Using Echelon form, find rank of $A = \begin{bmatrix} 1 & 2 & 1 & 0 \\ -2 & 4 & 3 & 0 \\ 1 & 0 & 2 & 8 \end{bmatrix}$
 - (b) Solve system of equations x+y+z=3, 2x+3y+2z=7, 4x+2y+3z=9, using Gauss elimination method. [7+8]

2. (a) Find Eigen Values and Eigen Vectors of
$$\begin{bmatrix} 1 & -6 & -4 \\ 0 & 4 & 2 \\ 0 & -6 & -3 \end{bmatrix}$$
 (b) Prove that the Eigen values of a group matrix A and its

(b) Prove that the Eigen values of a square matrix A and its transpose are same $[10{+}5]$

- 3. Reduce the quadratic form $7x^2 + 6y^2 + 5z^2 4xy 4yz$ to canonical from by diagonization. Also find the nature, index and signature and the linear transformation. [15]
- 4. (a) Using Newton-Raphson's method find a root of $2x 3 \sin x = 5$ which is nearer to 3
 - (b) Find the root between 2 and 3 of the equation $x^4 x^3 2x^2 6x 4 = 0$ using bisection method. [8+7]
- 5. (a) Interpolate by means of Gauss's backward formula the sales of a concern for the year 1976 for the given data

Year:	1940	1950	1960	1970	1980	1990
Sales (in lakhs of Rs.)	17	20	27	32	36	38

(b) Calculate f (1.30) from the following table.

\ \				0
X:	0.0	1.2	2.4	3.7
F(x):	3.41	2.68	1.37	-1.18

6. (a) The population of a certain town (as obtained from census data) is shown in the following table:

Year	1951	1961	1971	1981	1991
Population(in	19.96	39.65	58.81	77.21	94.61
thousand)					

Estimate the rate of growth of the population in the year 1981

Code No: R10206/R10

Set No. 3

(b) The following table gives the value of f(x) at equal intervals of x.

X	0	0.5	1.0	1.5	2.0
У	0.399	0.352	0.242	0.129	0.054

Evaluate $\int_0^2 f(x) dx$ using Simpsons 1/3 and Simpsons 3/8 rule. [8+7]

- 7. (a) Solve $\frac{dy}{dx} = \frac{1}{y+x} y(0) = 1$ by R-K method and hence find y(0.1)
 - (b) Solve $y^1=1+xy$ subject to the condition y(0)=2 by modified Euler's method and hence find y(0.1), y(0.2) [8+7]
- 8. (a) Fit a least square straight line to the following data

х	1	2	3	4	5
У	16	19	23	26	30

(b) Fit a least square parabola $y = a+bx+cx^2$ to the following data

х	0	1	2	3	4	[8+7]
У	2.1	3.5	5.4	7.3	8.2	

I B.Tech II Semester Supplementary Examinations, Feb. 2015 MATHEMATICAL METHODS

(Common to Mechanical Engineering, Electronics & Communication Engineering, Chemical Engineering, Bio-Medical Engineering, Information Technology, Electronics & Computer Engineering, Mining and Petroliem Technology)

Time: 3 hours

Max Marks: 75

Set No. 4

Answer any FIVE Questions All Questions carry equal marks *****

1. (a) Find rank of $A = \begin{bmatrix} -1 & 2 & 1 & 8 \\ 2 & 1 & -1 & 0 \\ 3 & 2 & 1 & 7 \end{bmatrix}$ by using Echelon form (b) Find rank of $A = \begin{bmatrix} 1 & 2 & 3 & 4 \\ 2 & 1 & 4 & 3 \\ 3 & 0 & 5 & -10 \end{bmatrix}$ using Normal Form [7+8]

2. Verify Cayley – Hamilton theorem and find A^{-1} if $A = \begin{bmatrix} 1 & 0 & 3 \\ 2 & 1 & -1 \\ 1 & -1 & 1 \end{bmatrix}$ [15]

- 3. (a) Define quadratic form, rank, signature and index of the quadratic form.
 - (b) Explain about the Nature of the quadratic form and find the nature of Quadratic form $2x_1x_2 4x_1x_3 4x_2x_3$ [5+10]
- 4. (a) Find a real root the equation $1 + \tan^{-1}(x) x = 0$ near x=1correct up to 4 decimal places using iteration method
 - (b) By using bisection method find an approximate root of the equation $\sin x = \frac{1}{x}$ that lies between x=1 and x=1.5 (measured in radians).Carryout computation up to 7th stage. [8+7]
- 5. (a) (i) Solve $\Delta (e^{ax} \log bx)$ (ii) Prove that $\nabla^6 y_8 = \Delta^6 y_2$.
 - (b) From the following table for find f(3.3) using gauss forward interpolation formula.

X	1	2	3	4	5	
Y = f(x)	15.30	15.10	15.00	14.50	14.00	[8+7]

6. (a) The population of a certain town (as obtained from census data) is shown in the following table:

Year	1891	1901	1911	1921	1931
Population(in	46	66	81	93	101
thousand)					

Estimate the rate of growth of the population in the year 1921

Code No: R10206/R10

(b) When a train is moving at 30 m/sec, steam is shut off and brakes are applied. The speed of the train per second after t seconds is given by

1		-			0	V			
Time (t):	0	5	10	15	20	25	30	35	40
Speed(v):	30	24	19.5	16	13.6	11.7	10	8.5	7.0

Using Simpson's rule, determine the distance moved by the train in 40 seconds.

[8+7]

- 7. (a) Solve $y^1 = x-y$, y(0) = 1 by modified Euler's method and find y(0.1), y(0.2)
 - (b) Apply third order R-K method to find y(0.25) where $y^1=1+xy$, y(0)=1 [8+7]
- 8. (a) Fit a curve of the type $y = a+bx+cx^2$ to the following data

To a curve of the type y at bar or the following										
Х	10	15	20	25	30	35				
У	35.3	32.4	29.2	26.1	23.2	20.5				

(b) Fit a curve of the type $y=ab^x$ to the following data by the method of least squares

Х	1	2	5	10	20	30	40	50	
У	98.2	91.7	81.3	64	36.4	32.6	7.1	11.3	[7+8]