I B.Tech II Semester Supplementary Examinations, Feb. 2015 MATHEMATICAL METHODS

(Common to Mechanical Engineering, Electronics \& Communication Engineering, Chemical Engineering, Bio-Medical Engineering, Information Technology, Electronics \& Computer Engineering, Mining and Petroliem Technology)
Time: 3 hours
Max Marks: 75

Answer any FIVE Questions

All Questions carry equal marks

1. (a) Find rank of matrix using Normal form $A=\left[\begin{array}{cccc}8 & 1 & 3 & 6 \\ 0 & 3 & 2 & 2 \\ -8 & -1 & -3 & 4\end{array}\right]$
(b) Are the following equations consistent, if so solve them $2 \mathrm{x}+3 \mathrm{y}-\mathrm{z}-2 \mathrm{w}=2,4 \mathrm{x}+5 \mathrm{y}+3 \mathrm{z}=7$ $x+y+2 z+w=5$
2. Find Eigen Vectors of $A=\left[\begin{array}{lll}1 & 0 & 1 \\ 1 & 4 & 3 \\ 0 & 2 & 0\end{array}\right]$
3. Find the rank, signature and index of the quadratic form
$2 x_{1}^{2}+x_{2}^{2}-3 x_{3}^{2}+12 x_{1} x_{2}-4 x_{1} x_{3}-8 x_{2} x_{3}$ by reducing it to normal form .Also write the linear transformation which brings about the normal reduction
4. (a) Compute the real root of the equation $3 x=\cos x+1$ by Bisection method
(b) Compute the real root of the equation $\tan x=x$ by iteration method. [8+7]
5. (a) If the interval of differencing is unity, prove the following:
(i) $\Delta\left(\frac{2^{x}}{x!}\right)=\frac{2^{x}(1-x)}{(x+1)!}$
(ii) $\Delta\left\{\tan ^{-1}\left(\frac{n-1}{n}\right)\right\}=\tan ^{-1}\left(\frac{1}{2 n^{2}}\right)$
(b) Using the Newton's forward differences formula, find the interpolating polynomial for the function $y=f(x)$ given by $f(0)=1, f(1)=2, f(2)=1$, $f(3)=10$. Hence evaluate $f(0.75)$ and $f(-0.5)$.
6. (a) Find $\frac{d y}{d x}$ at $\mathrm{x}=7.47$ from the following table.

X	7.47	7.48	7.49	7.5	7.51	7.52	7.53
Y	0.193	0.195	0.198	0.201	0.203	0.206	0.208

(b) The following Table gives the temperature θ (in degrees of Celsius) of a cooling body at different instants of time t (in seconds):

$\mathrm{t}:$	1	3	5	7	9
$\theta:$	85.3	74.5	67.0	60.5	54.3

Find approximately the rate of cooling at $\mathrm{t}=8$ seconds.
7. (a) Solve $\frac{d y}{d x}=\frac{1}{y+x} y(0)=1$ by R-K method and hence find $y(0.1)$
(b) Solve $\mathrm{y}^{1}=1+\mathrm{xy}$ subject to the condition $\mathrm{y}(0)=2$ by modified Euler's method and hence find $\mathrm{y}(0.1), \mathrm{y}(0.2)$

$$
[8+7]
$$

8. (a) Fit a curve of the type $\mathrm{y}=\mathrm{ae}^{b x}$ to the data by the method of least squares

x	1	2	3	4	5
y	2.6	3.3	4.2	5.4	6.9

(b) .Fit straight line to the data by the method of least squares

x	2	3	4	5	6
y	144	172.8	207.4	248.8	298.5

I B.Tech II Semester Supplementary Examinations, Feb. 2015
MATHEMATICAL METHODS
(Common to Mechanical Engineering, Electronics \& Communication Engineering, Chemical Engineering, Bio-Medical Engineering, Information Technology, Electronics \& Computer Engineering, Mining and Petroliem Technology)
Time: 3 hours
Max Marks: 75

Answer any FIVE Questions

All Questions carry equal marks

1. (a) Find rank of a Matrix using Echelon form where $A=\left[\begin{array}{cccc}1 & -1 & 2 & 0 \\ 0 & 1 & 2 & 1 \\ 5 & 3 & 14 & 4\end{array}\right]$
(b) Show that equations $x+y+z=6, x+2 y+3 z=14, x+4 y+7 z=30$ are consistent and solve them
2. Find Eigen vectors of $A=\left[\begin{array}{lll}2 & 2 & 1 \\ 1 & 3 & 1 \\ 1 & 2 & 2\end{array}\right]$
3. Determine the nature, index rank, and signature of the quadratic form
$5 x_{1}^{2}+26 x_{2}^{2}+10 x_{3}^{2}+6 x_{1} x_{2}+14 x_{1} x_{3}+4 x_{2} x_{3}$
4. (a) Find the root of the equation $x^{3}-6 x+4=0$ by Newton-Raphson's Method correct to five decimal places
(b) Find a root of the equation $x \log _{10} x=1.2$ by Bisection method.
5. (a) The values of annuities for certain ages are given for the following ages. Find the annuity at age $27 \frac{1}{2}$ using Gauss's forward interpolation formula

Age:	25	26	27	28	29
Annuity:	16.195	15.919	15.630	15.326	15.006

(b) Find $\mathrm{f}(2.5)$ using Newton's forward formula from the following table

X	0	1	2	3	4	5	6
Y	0	1	16	81	256	625	1296

6. (a) The velocity v of a particle moving in a straight line covers at distance x in time t . They are related as given in the following table. Find $f^{\prime}(15)$

X	0	10	20	30	40
Y	45	60	65	54	42

(b) Evaluate $\int_{0}^{1} x^{3} \mathrm{dx}$ with five sub-intervals by Trapezoidal rule. $[8+7]$
7. (a) Solve $y^{1}=3 x+y / 2, y(0)=1$ by Taylor series method and hence find $y(0.1)$, $\mathrm{y}(0.2)$
(b) Solve the equation $\frac{d y}{d x}=x y+1, \mathrm{y}(0)=1$ by Picard's method and hence find $\mathrm{y}(0.1)$
8. (a) Fit a least square parabola $\mathrm{y}=\mathrm{a}+\mathrm{bx}+\mathrm{cx}^{2}$ to the following data

x	0	1	2	3	4	5	6
y	3	3	5	9	15	23	33

(b) Fit a straight line of the form $\mathrm{y}=\mathrm{a}+\mathrm{bx}$ to the following data

x	1	2	3	4	6	8
y	2.4	3.1	3.5	4.2	5	6

I B.Tech II Semester Supplementary Examinations, Feb. 2015 MATHEMATICAL METHODS

(Common to Mechanical Engineering, Electronics \& Communication Engineering, Chemical Engineering, Bio-Medical Engineering, Information Technology, Electronics \& Computer Engineering, Mining and Petroliem Technology)
Time: 3 hours
Max Marks: 75

Answer any FIVE Questions

All Questions carry equal marks

1. (a) Using Echelon form, find rank of $A=\left[\begin{array}{cccc}1 & 2 & 1 & 0 \\ -2 & 4 & 3 & 0 \\ 1 & 0 & 2 & 8\end{array}\right]$
(b) Solve system of equations $\mathrm{x}+\mathrm{y}+\mathrm{z}=3,2 \mathrm{x}+3 \mathrm{y}+2 \mathrm{z}=7,4 \mathrm{x}+2 \mathrm{y}+3 \mathrm{z}=9$, using Gauss elimination method.
2. (a) Find Eigen Values and Eigen Vectors of $\left[\begin{array}{ccc}1 & -6 & -4 \\ 0 & 4 & 2 \\ 0 & -6 & -3\end{array}\right]$
(b) Prove that the Eigen values of a square matrix A and its transpose are same
3. Reduce the quadratic form $7 x^{2}+6 y^{2}+5 z^{2}-4 x y-4 y z$ to canonical from by diagonlzation. Also find the nature, index and signature and the linear transformation.
4. (a) Using Newton-Raphson's method find a root of $2 x-3 \sin x=5$ which is nearer to 3
(b) Find the root between 2 and 3 of the equation $x^{4}-x^{3}-2 x^{2}-6 x-4=0$ using bisection method.
$[8+7]$
5. (a) Interpolate by means of Gauss's backward formula the sales of a concern for the year 1976 for the given data

Year:	1940	1950	1960	1970	1980	1990
Sales (in lakhs of Rs.)	17	20	27	32	36	38

(b) Calculate f (1.30) from the following table.

$\mathrm{X}:$	0.0	1.2	2.4	3.7
$\mathrm{~F}(\mathrm{x}):$	3.41	2.68	1.37	-1.18

6. (a) The population of a certain town (as obtained from census data) is shown in the following table:

Year	1951	1961	1971	1981	1991
Population(in thousand)	19.96	39.65	58.81	77.21	94.61

Estimate the rate of growth of the population in the year 1981
(b) The following table gives the value of $\mathrm{f}(\mathrm{x})$ at equal intervals of x .

x	0	0.5	1.0	1.5	2.0
y	0.399	0.352	0.242	0.129	0.054

Evaluate $\int_{0}^{2} f(x) d x$ using Simpsons $1 / 3$ and Simpsons $3 / 8$ rule.
7. (a) Solve $\frac{d y}{d x}=\frac{1}{y+x} y(0)=1$ by R-K method and hence find $y(0.1)$
(b) Solve $y^{1}=1+x y$ subject to the condition $y(0)=2$ by modified Euler's method and hence find $\mathrm{y}(0.1), \mathrm{y}(0.2)$
8. (a) Fit a least square straight line to the following data

x	1	2	3	4	5
y	16	19	23	26	30

(b) Fit a least square parabola $\mathrm{y}=\mathrm{a}+\mathrm{bx}+\mathrm{cx}^{2}$ to the following data

x	0	1	2	3	4
y	2.1	3.5	5.4	7.3	8.2

Set No. 4

I B.Tech II Semester Supplementary Examinations, Feb. 2015 MATHEMATICAL METHODS

(Common to Mechanical Engineering, Electronics \& Communication Engineering, Chemical Engineering, Bio-Medical Engineering, Information Technology, Electronics \& Computer Engineering, Mining and Petroliem Technology)
Time: 3 hours
Max Marks: 75
Answer any FIVE Questions
All Questions carry equal marks

1. (a) Find rank of $A=\left[\begin{array}{cccc}-1 & 2 & 1 & 8 \\ 2 & 1 & -1 & 0 \\ 3 & 2 & 1 & 7\end{array}\right]$ by using Echelon form
(b) Find rank of $A=\left[\begin{array}{cccc}1 & 2 & 3 & 4 \\ 2 & 1 & 4 & 3 \\ 3 & 0 & 5 & -10\end{array}\right]$ using Normal Form $\quad[7+8]$
2. Verify Cayley - Hamilton theorem and find A^{-1} if $A=\left[\begin{array}{ccc}1 & 0 & 3 \\ 2 & 1 & -1 \\ 1 & -1 & 1\end{array}\right]$
3. (a) Define quadratic form, rank, signature and index of the quadratic form.
(b) Explain about the Nature of the quadratic form and find the nature of Quadratic form $2 x_{1} x_{2}-4 x_{1} x_{3}-4 x_{2} x_{3}$
4. (a) Find a real root the equation $1+\tan ^{-1}(x)-x=0$ near $\mathrm{x}=1$ correct up to 4 decimal places using iteration method
(b) By using bisection method find an approximate root of the equation $\sin x=\frac{1}{x}$ that lies between $\mathrm{x}=1$ and $\mathrm{x}=1.5$ (measured in radians).Carryout computation upto $7^{\text {th }}$ stage.
5. (a) (i) Solve $\Delta\left(e^{a x} \log b x\right)$ (ii) Prove that $\nabla^{6} y_{8}=\Delta^{6} y_{2}$.
(b) From the following table for find $\mathrm{f}(3.3)$ using gauss forward interpolation formula.

x	1	2	3	4	5
$\mathrm{Y}=\mathrm{f}(\mathrm{x})$	15.30	15.10	15.00	14.50	14.00

6. (a) The population of a certain town (as obtained from census data) is shown in the following table:

Year	1891	1901	1911	1921	1931
Population(in thousand)	46	66	81	93	101

Estimate the rate of growth of the population in the year 1921
(b) When a train is moving at $30 \mathrm{~m} / \mathrm{sec}$, steam is shut off and brakes are applied. The speed of the train per second after t seconds is given by

Time (t):	0	5	10	15	20	25	30	35	40
Speed(v):	30	24	19.5	16	13.6	11.7	10	8.5	7.0

Using Simpson's rule, determine the distance moved by the train in 40 seconds.
7. (a) Solve $y^{1}=x-y, y(0)=1$ by modified Euler's method and find $y(0.1), y(0.2)$
(b) Apply third order R-K method to find $\mathrm{y}(0.25)$ where $\mathrm{y}^{1}=1+\mathrm{xy}$, $\mathrm{y}(0)=1[8+7]$
8. (a) Fit a curve of the type $y=a+b x+\mathrm{cx}^{2}$ to the following data

x	10	15	20	25	30	35
y	35.3	32.4	29.2	26.1	23.2	20.5

(b) Fit a curve of the type $y=a b^{x}$ to the following data by the method of least squares

x	1	2	5	10	20	30	40	50
y	98.2	91.7	81.3	64	36.4	32.6	7.1	11.3

